On a Factorisation of Positive Definite Matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON f-CONNECTIONS OF POSITIVE DEFINITE MATRICES

In this paper, by using Mond-Pečarić method we provide some inequalities for connections of positive definite matrices. Next, we discuss specifications of the obtained results for some special cases. In doing so, we use α-arithmetic, α-geometric and α-harmonic operator means.

متن کامل

Riemannian geometry on positive definite matrices

The Riemannian metric on the manifold of positive definite matrices is defined by a kernel function φ in the form K D(H,K) = ∑ i,j φ(λi, λj) −1TrPiHPjK when ∑ i λiPi is the spectral decomposition of the foot point D and the Hermitian matrices H,K are tangent vectors. For such kernel metrics the tangent space has an orthogonal decomposition. The pull-back of a kernel metric under a mapping D 7→ ...

متن کامل

Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices

‎In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces‎, ‎which are the Einstein and M"{o}bius gyrovector spaces‎. ‎We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...

متن کامل

Product of three positive semi-definite matrices

In [2], the author showed that a square matrix with nonnegative determinant can always be written as the product of five or fewer positive semi-definite matrices. This is an extension to the result in [1] asserting that every matrix with positive determinant is the product of five or fewer positive definite matrices. Analogous to the analysis in [1], the author of [2] studied those matrices whi...

متن کامل

Wasserstein Riemannian Geometry of Positive-definite Matrices∗

The Wasserstein distance on multivariate non-degenerate Gaussian densities is a Riemannian distance. After reviewing the properties of the distance and the metric geodesic, we derive an explicit form of the Riemannian metrics on positive-definite matrices and compute its tensor form with respect to the trace scalar product. The tensor is a matrix, which is the solution of a Lyapunov equation. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Mathematical Bulletin

سال: 1963

ISSN: 0008-4395,1496-4287

DOI: 10.4153/cmb-1963-035-9